
 1

Model Integrated Computing in the Large  
 

Akos Ledeczi, Gyorgy Balogh, Zoltan Molnar, Peter Volgyesi and Miklos Maroti 
Institute for Software Integrated Systems 

Vanderbilt University, Nashville, TN 37235 
+1 615 343 8307 

{akos, bogyom, zolmol, volgy, mmaroti}@isis.vanderbilt.edu 
 

Abstract1,2—As model integrated computing gains wider 
and wider acceptance, the scalability of the supporting tools 
becomes a significant issue. Large, complex projects 
involve many developers who create large and complex 
models. Supporting large-scale model integrated computing 
requires two key features currently lacking in available 
tools: (1) distributed, simultaneous multi-user access to the 
models and (2) model versioning. Our proposed solution is 
based on storing the models at a relatively fine granularity 
in xml files on a server under the control of a traditional 
source code control system. The model builder tool then 
only needs to implement the client functionality of the 
version control tool. However, there is one significant 
technical challenge that needs to be solved. Models are 
captured as complex interdependent data structures in a 
model editor. Containment, binary and n-ary relations are 
kept as a consistent set of data by the model builder. The 
model builder tool needs to keep track of these interdepend-
encies and ensure consistency at all times even when 
multiple users edit the models. 

TABLE OF CONTENTS 

1. INTRODUCTION......................................................1 
2. MODEL-INTEGRATED COMPUTING ......................2 
3. DISTRIBUTED ACCESS AND VERSION CONTROL ..4 
4. SMART COPY .........................................................6 
5. CONCLUSION .........................................................6 
ACKNOWLEDGEMENTS .............................................6 
REFERENCES .............................................................8 
BIOGRAPHY ...............................................................8 

1. INTRODUCTION 
As Model Integrated Computing (MIC) [1] gains wider and 
wider acceptance the scalability of the supporting tools 
becomes a significant issue. Large, complex projects 
involve many developers who create large and complex 
models. Supporting large-scale model integrated computing 
requires two key features currently lacking in available 
tools: (1) distributed, simultaneous multi-user access to the 
models and (2) model versioning. Traditional, code-driven 
development environments have had these features 
available through software version control tools such as 
CVS or Visual Sourcesafe for a long time now. They are 
typically based on a client-server model where the server 
stores the source files that comprise the project and provide 
check-in/check-out support to clients. Other features include 
                                                           
1 0-7803-8870-4/05/$20.00© 2005 IEEE 
2 IEEEAC paper #1120, Version 3, Updated November 28, 2004 

versioning and merging capabilities. The question is how 
can be similar support provided to model integrated 
development? 
 
As traditional software version control tools are mature 
products and most developers already use them, the natural 
answer is to utilize these tools in the model integrated 
computing arena as well. Our proposed solution is based on 
storing the models at a relatively fine granularity in xml 
files on a server under the control of a versioning system. 
The model builder tool then only needs to implement the 
client functionality of the version control tool. This 
approach has several significant advantages: 
 
• Multiple users can access the same project simultane-

ously. The server provides locking through the check-
in/check-out facilities of the version control software. 
We mandate strict access control implemented by the 
model builder client to ensure that the server stores a 
consistent set of models all the time. 

• Having consistent models all the time means that any 
past version of the models is available from the server.  

• Distributed multi-user access and model version control 
can be achieved “almost free,” that is, only relatively 
minor modifications to the model builder tool are 
required to gain these two significant features. 

 
However, there is one significant technical challenge that 
needs to be solved. Models are captured as complex 
interdependent data structures in a model editor. 
Containment, binary and n-ary relations, attributes and 
preferences are kept as a consistent set of data by the model 
builder. In traditional development, text entered by the user 
describes interdependencies between code components and 
a compiler is tasked to figure out whether the code is 
consistent or not (e.g. does a particular function call refer to 
an existing function or not) and all errors are corrected 
manually by the user. Model integrated computing tools 
keep the models consistent and compliant with the given 
domain-specific language at all times. Consequently, editing 
a certain model can impact several other models. The model 
builder tool needs to keep track of these interdependencies 
and lock all models that can be affected by editing the 
current model. 
 
We have implemented these features in the GME [2], the 
Generic Modeling Environment (http://www.isis.vanderbilt. 
edu/Projects/gme/) and integrated Rational Clearcase [7] 
and Microsoft Visual Sourcesafe [8] support. In the rest of 



 2

the paper we describe Model Integrated Computing and the 
Generic Modeling Environment in more detail. Then we 
detail the technical approach and challenges to providing 
distributed simultaneous access to models and version 
control. Then an innovative technique to model migration 
supporting scalability is presented. Finally, we present our 
conclusions. 

2. MODEL-INTEGRATED COMPUTING 
Model-Integrated Computing (MIC) employs domain-
specific models to represent the system, its environment, 
and their relationship. These models are then used to 
automatically synthesize the embedded applications and 
generate inputs to COTS analysis tools such as model 
checkers or simulators. This approach speeds up the design 
cycle, facilitates the evolution of the application and helps 
system maintenance, dramatically reducing costs during the 
entire lifecycle of the system. 
 
Creating domain-specific visual model building, constraint 
management, and automatic program synthesis components 
for a MIC environment for each new domain would be cost-
prohibitive for most domains. Applying a generic 
environment with generic modeling concepts and 
components would eliminate one of the biggest advantages 
of MIC — the dedicated support for widely different 
application domains. An alternative solution is to use a 
configurable environment that makes it possible to 
customize the MIPS components for a given domain.  
 
The configuration can be done through metamodels 
specifying the modeling paradigm of the application 
domain. The modeling paradigm is the modeling language 
of the domain specifying the objects and their relationships. 
In addition to syntactic rules, semantic information can also 
be described as a set of constraints. The Unified Modeling 
Language (UML) and the Object Constraint Language 
(OCL), respectively, are used for these purposes in MIC. 
The metamodels, are used to automatically generate the 
MIC environment for the domain. An interesting aspect of 
this approach is that the same environment is used to build 
the metamodels [2]. 
 
The generated domain-specific MIC environment is used to 
build domain models that are stored in a model database. 
These models are used to automatically generate the 
applications or to synthesize input to different analysis 
tools. This process is called model interpretation or 
translation. 
 
This approach and the same software toolset have been used 
to create and deploy large-scale systems that are in every-
day use in widely different engineering domains. The 
Saturn Site Production System (SSPF) is a large distributed 
production monitoring system used by the Saturn 
Corporation in car manufacturing [6]. Other systems include 
a fault detection isolation and recovery system used by 

Boeing and NASA on the International Space Station [4], 
an integrated simulation environment for embedded system 
development [3], and a safety and reliability analysis tool 
used by Sandia National Labs [5]. 
 

The Generic Modeling Environment 

The Generic Modeling Environment (GME) is a 
metaprogrammable graphical editor supporting MIC. The 
component based architecture of GME is shown below. 

Decorator Decorator

GModel GMeta

CORE

MetamodelXML

Paradigm Definition

Storage Options
… DB #nDB #1 XML …

Constraint
ManagerBrowser

Translator(s)Add-On(s)

GME Editor

 
Figure 1 GME Architecture 

 
The thin storage layer includes components for the different 
storage formats. Currently, an ODBC interface to different 
relational databases, an XML format and a fast proprietary 
binary file format are sup-ported. Supporting an additional 
format requires the implementation of a single, well-
defined, small interface component. 
 
The Core component implements the two fundamental 
building blocks of a modeling environment: objects and 
relations. Among its services are distributed access (i.e. 
locking) and undo/redo. 
 
Two components use the services of the Core: the GMeta 
and the GModel. The GMeta defines the modeling para-
digm, while the GModel implements the GME modeling 
concepts for the given paradigm. The GModel uses the 
GMeta component extensively through its public COM 
interfaces. The GModel component exposes its services 
through a set of COM interfaces as well. 
 
The user interacts with the components at the top of the 
architecture: the GME User Interface, the Model Browser, 
the Constraint Manager, Translators and Add-ons. 
Add-ons are event-driven model interpreters. The GModel 
component exposes a set of events, such as “Object 
Deleted,” “Set Member Added,” “Attribute Changed,” etc. 
External components can register to receive some or all of 
these events. They are automatically invoked by the 
GModel when the events occur. Add-ons are extremely 



 3

useful for extending the capabilities of the GME User 
Interface. When a particular domain calls for some special 
operations, these can be supported without modifying the 
GME itself.  
The Constraint Manager can be considered as a translator 
and an add-on at the same time. It can be invoked explicitly 
by the user and it is also invoked when event-driven 
constraints are present in the given paradigm. Depending on 
the priority of a constraint, the operation that caused a 
constraint violation can be aborted. For less serious 
violations, the Constraint Manager only sends a warning 
message. 
 
The GME User Interface component has no special 
privileges in this architecture. Any other component 
(translator, add-on) has the same access rights and uses the 
same set of COM interfaces to the GME. Any operation that 
can be accomplished through the GUI, can also be done 
programmatically through the interfaces. This architecture is 
very flexible and supports extensibility of the whole 
environment. 
 
Generic Modeling Concepts 

The vocabulary of the domain-specific languages 
implemented by different GME configurations is based on a 
set of generic concepts built into GME itself. The choice of 
these generic concepts is the most critical design decision. 
GME supports various concepts for building large-scale, 
complex models. These include: hierarchy, multiple aspects, 
sets, references, and explicit constraints. The UML class 
diagram in Figure 2 depicts the complex relationships 
among these and other important concepts. 
 
A Project contains a set of Folders. Folders are containers 
that help organize models, just like folders on a disk help 
organize files. Folders contain Models. Models, Atoms, 
References, Connections and Sets are all first class objects, 
or FCO-s for short. 
 
Atoms are the elementary objects – they cannot contain 
parts. Each kind of Atom is associated with an icon and can 
have a predefined set of attributes. The attribute values are 
user changeable. A good example for an Atom is an AND 
or XOR gate in a gate level digital circuit model. 
 
Models are the compound objects in our framework. They 
can have parts and inner structure. A part in a container 
Model always has a Role. The modeling paradigm 
determines what kind of parts are allowed in Models acting 
in which Roles, but the modeler determines the specific 
instances and number of parts a given model contains (of 
course, explicit constraints can always restrict the design 
space). For example, if we want to model digital circuits 
below the gate level, then we would have to use Models for 
gates (instead of Atoms) that would contain, for example, 
transistor Atoms. 
 

This containment relationship creates the hierarchical 
decomposition of Models. If a Model can have the same 
kind of Model as a contained part, then the depth of the 
hierarchy can be (theoretically) unlimited. Any object must 
have at most one parent, and that parent must be a Model. 
At least one Model does not have a parent; it is called a root 
Model. 
Aspects provide primarily visibility control. Every Model 
has a predefined set of Aspects. Each part can be visible or 
hidden in an Aspect. Every part has a set of primary aspects 
where it can be created or deleted. There are no restrictions 
on the set of Aspects a Model and its parts can have; a 
mapping can be defined to specify what Aspects of a part is 
shown in what Aspect of the parent Model. 
 
The simplest way to express a relationship between two 
objects in GME is with a Connection. Connections can be 
directed or undirected. Connections can have Attributes 
themselves. In order to make a Connection between two 
objects they must have the same parent in the containment 
hierarchy (and they also must be visible in the same Aspect, 
i.e. one of the primary Aspects of the Connection). The 
paradigm specifications can define several kinds of 
Connections. It is also specified what kind of object can 
participate in a given kind of Connection. Connections can 
further be restricted by explicit Constraints specifying their 
multiplicity, for instance. 
 
A Connection can only express a relationship between 
objects contained by the same Model. Note that a Root 
Model, for example, cannot participate in a Connection at 
all.  In our experience, it is often necessary to associate 
different kinds of model objects in different parts of the 
model hierarchy or even in different model hierarchies 
altogether. References support these kinds of relationships 
well. 
 
References are similar to pointers in object oriented 
programming languages. A reference is not a "real" object, 
it just refers to (points to) one. In GME, a reference must 
appear as a part in a Model. This establishes a relationship 
between the Model that contains the reference and the 
referred-to object. Any FCO, except for a Connection, can 
be referred to (even references themselves). References can 
be connected just like regular model objects. A reference 
always refers to exactly one object, while a single object 
can be referred to by multiple References. If a Reference 
refers to nothing, it is called a Null Reference. This can act 
as a placeholder for future use, for example 
 
Connections and References are binary relationships. Sets 
can be used to specify a relationship among a group of 
objects. The only restriction is that all the members of a Set 
must have the same container (parent) and be visible in the 
same Aspect 
 



 4

 
Figure 2 GME modeling concepts 

 
 
Some information does not lend itsef well to graphical 
representation. The GME provides the facility to augment 
the graphical objects with textual attributes. All FCOs can 
have different sets of Attributes. The kinds of Attributes 
available are text, integer, double, boolean and enumerated.  
 
Folders, FCOs (Models, Atoms, Sets, References, 
Connections), Roles, Constraints and Aspects are the main 
concepts that are used to define a modeling paradigm. In 
other words, the modeling language is made up of instances 
of these concepts. In an object-oriented programming 
language, such as Java, the corresponding concepts are the 
class, interface, built-in types, etc. Models in GME are 
similar to classes in Java; they can be instantiated. When a 
particular model is created in GME, it becomes a type 
(class). It can be subtyped and instantiated as many times as 
the user wishes. The general rules that govern the behavior 
of this inheritance hierarchy are: 
 
• Only attribute values of model instances can be 

modified. No parts can be added or deleted. 
• Parts cannot be deleted but new parts can be added to 

subtypes. 
 
This concept supports the reuse and maintenance of models 
because any change in a type automatically propagates 
down the type hierarchy. Also, this makes it possible to 
create libraries of type models that can be used in multiple 
applications in the given domain 

3. DISTRIBUTED ACCESS AND VERSION CONTROL 
Existing GME backends include a binary file format for fast 
and easy model access, a rarely used ODBC compliant 
relational database interface and an XML file format. All 
these store a project – a set of related models – as a single 
entity. This does not lend itself to fine grained distributed 
access by multiple users.  
 
As the structure of a project is inherently hierarchical – it 
has its own folder structure and models typically contain 
other models in a recursive manner – storing each folder 
and model in its own xml file is a natural fit. This fine 
grained xml backend then can be put under the control of a 
traditional source code control tool, such as Rational 
Clearcase or Microsoft Sourcesafe. Locking files for 
distributed access can then be accomplished utilizing the 
check-in/check-out facilities of these tools. Furthermore, 
version control is automatically achieved also. 
This client/server architecture is depicted in Figure 3. The 
xml files are stored on a server under the control of a 
version control tool. Multiple users on different machines 
can request access to different parts of the project. If the 
access is granted they get a local copy of the files and keep 
a lock on the files until they check in their modifications. 
 
The only significant technical challenge with this approach 
is how to keep the models consistent as multiple users 
modify them. The syntax and static semantics of a domain 
specific language in GME are defined by metamodels in the 



 5

UML class diagram notation and a set of Object Constraint 
Language (OCL) constraints. When building models all the 
rules are enforced by GME at all times. That is, the models 
are always syntactically correct and consistent. This is in 
contrast to traditional code-based development methods 
where the users can modify source files at will and it is the 
compiler’s job to identify inconsistencies and the users‘ 
responsibility to fix them. 

Folder 
structure 
and XML 

files

Backend

Version and 
access 
control

Clearcase
or

Sourcesafe

GME
User

GME
User

GME
User

Distributed
Access

 
Figure 3 Client server architecture 

 
Having correct and consistent models all the time has been 
proved to be a valuable feature that needed to be preserved. 
The consequence of this design decision is that not only do 
we have to lock a given model when it is edited by a user, 
but all other models whose concurrent modification might 
introduce inconsistencies. Another related rule is that no 
user’s work should be wasted, that is, a modification by one 
user must not invalidate another user’s modification (for 
example, a model must not be deleted when someone is 
working on one of its descendant in the model hierarchy). 
 
What are the modeling concepts in GME that can affect 
model consistency in case of concurrent model access? 
Containment clearly needs to be managed, e.g. when 
working on a model, none of its descendant should be 
accessible. Type inheritance forms an orthogonal hierarchy 
that needs to be guarded, e.g. when a type model is being 
edited none of its descendants in the inheritance hierarchy 
can be modified concurrently. References can cut across the 
containment hierarchy. Furthermore, what model a 
reference refers to determines what parts it have, 
specifically what ports it has for making connections to the 
reference. References can form chains, that is, a reference 
can refer to a reference that refers to a model etc. Hence, 
when a model has references pointing to it is being edited, 
all models along all reference chains need to be locked also. 
Fortunately, sets and connections always involve objects 
inside a given model (or their children in case of 
connections to ports of models). Because of locking due to 
the containment relation, sets and connections do not 
necessitate locking additional objects. 
 

Careful design decisions of how the model information is 
stored in the xml files and the introduction of a model cache 
kept the number files that need to be locked at a minimum 
as described below. 
 
Operation 

Every project has its own folder containing an .mgx project 
file, a .bin binary cache file and separate .xml files for each 
GME model and folder. The project file contains the source 
control database information; it can be Visual Sourcesafe or 
Rational Clearcase. The xml files contain all contained 
objects, relationships, attributes and registry information of 
the given model. Relationships are stored in one direction 
only, for example, the basetype of the model is stored, but 
its subtypes or instances are not. This way the basetype does 
not need to be locked when one of its subtypes is being 
edited. The basetype still cannot be edited, as locking all its 
derived types would fail, but other subtypes or instances of 
the basetype can be modified. Finally, the cache file 
contains the structure of the project, i.e. a pointer for each 
model object in the entire project and all their relationships. 
This way there is no need to parse a large number of xml 
files to figure out what to lock when a modification request 
arrives, that information is available in the cache. The cache 
is not stored on the server; instead, it is built and maintained 
by each client.  
 
When a multiuser project is opened, it gets the latest version 
of xml files then incrementally updates its internal data 
structure and the cache file. When a modification request 
occurs GME tries to check out the file being modified and 
all the dependent files. If any one of the files cannot be 
checked out, the operation fails and the user gets an error 
message. Otherwise, all the dependent files are checked out 
and the modification gets done. Checked out files will be 
checked in when the project is saved or closed. The user can 
decide to keep the files checked out after check-in. This 
way the user can ensure that nobody takes over his part after 
a save operation. GME keeps in memory only the project 
structure (i.e. the cache) and saves all other information to 
disk when it is not necessary. This mechanism makes it 
possible to work with large projects efficiently. 
Example 

The Embedded System Modeling Language (ESML) was 
designed for avionics system development [9]. The Model 
of Computation ESML targets is based on the Real-Time 
Event Channel [10] technology defined in the CORBA 
standard (http://www.omg.org). The result of modeling in 
ESML is a set of diagrams that visually depict components, 
interactions, and configurations. Various external tools 
integrated with the modeling environment perform analyses 
including end-to-end deadline and rate verification, 
schedulability checks, event dependency analysis, and 
others. A translator generates C++ code for system 
configuration and initialization from the ESML models, and 
then runs a build process to compile executables.  
ESML models for large avionics systems are necessarily 



 6

large and complex themselves. The first test case of the 
distributed multi-user access and version control features of 
GME is ESML. Figures 4 and 5 show different parts of an 
ESML project opened by two different users at the same 
time. The models browsers on the right hand side depict 
(part of) the hierarchical structure of the project. Green 
checkmarks indicate models currently locked for the current 
user, while red X marks each model that is checked out by 
another user. 

4. SMART COPY 
When working with large projects, the simple copy/paste 
methods that work well for text become severely 
inadequate. The issue is again the fact that models capture 
rich interrelationships between objects. When we select a 
set of objects and copy them to a different project all 
relationships that point out of the originally selected set are 
lost. Furthermore, if we select another set and copy it over, 
the relationships that existed between objects that were 
copied first and object that were copied subsequently are 
not restored either. We have developed two related 
techniques to address these limitations: a copy closure that 
attacks the first problem and a smart copy that solves the 
second one. 
 
Copy closure 

The basic scenario is to allow the user to select a set of 
objects and create a closure of the set following a user 
selectable set of relationships, such as containment, 
inheritance or connection, etc., recursively. This expanded 
set of object is then copied to the clipboard and can be 
inserted with the regular Paste command into another 
project. This way, for example, a model can be selected and 
a closure can be created automatically following the type 
inheritance hierarchy upward, that is, all base types of the 
model will be also copied. The following relationships can 
be selected: 
 
• Containment: when the algorithm encounters a model 

(it is part of the originally selected objects or becomes 
part of the closure), then all of its contained objects 
become part of the closure. This relationship – just as 
all others described below – are followed in a recursive 
manner 

• Container: the container model (or folder) becomes part 
of the closure. 

• Refers To: when a reference is encountered the object it 
refers to is included in the closure. 

• Referred By: if an object is part of the closure then all 
references referring to it will be included also. 

• Set Members: when a set is inserted into the closure all 
of its members are inserted as well. 

• Member of Sets: when an object becomes part of the 
closure, all sets this objects is member of will be 
inserted. 

• Connection: this option has double meaning: (1) if a 

connection is included then the connection ends will be 
inserted into the closure and (2) if an object is inserted 
into the closure and it is connected to an object (it may 
be itself) then the connection is inserted, and conse-
quently the destination object of the connection will be 
inserted also. 

• Base Type: if a derived object is met, then the basetype 
of that is included also. 

• Derived Types: if a type is met which has one or more 
derived types and/or instances, then all these models 
will be included. 

 

Smart copy 

The smart copy tries to make a merging copy, that is, it 
attempts to restore relationships between objects that exist 
in the source project, but because of multiple partial 
copy/paste operations would otherwise be lost in the target 
project. The basic use case is to select and copy a reference 
and paste it into another project. The feature tries to 
reestablish the referred to relationship in the target project 
based on relative name paths. When naming is ambiguous, 
the parsing logic tries to find the right object based on the 
original order of creation of the objects with the same name 
and kind. 
 
References, sets, connections and type inheritance can be 
restored using the smart copy. Note that references and sets 
are always inserted regardless whether their referred objects 
or set members are found or not. A connection is only 
inserted in case both its source and destination are found. 

5. CONCLUSION 
Models play more and more important roles in software 
development. Model-driven development methods, such as 
model integrated computing, need to scale up to being able 
to support large, complex projects. Distributed, simultane-
ous access to the models by multiple users and version 
control are all necessary conditions for this to happen. The 
technical approach we developed utilizing xml and 
traditional source code control tools is a relatively simple, 
yet powerful technique to provide these capabilities. A 
significant advantage is that it utilizes existing tools already 
begin used by developers, hence, the learning curve is 
relatively flat. We also presented a new powerful copy/paste 
method that proved to be an invaluable tool in managing 
complex models. An implementation of these techniques is 
available in the latest version of the Generic Modeling 
Environment downloadable at http://www.isis.vanderbilt 
.edu/Projects/gme/. 

ACKNOWLEDGEMENTS 
This work was supported in part by the Escher Research 
Institute, the Boeing Company and the Defense Advanced 
Research Projects Agency (DARPA, contract  number: 
F33615-C-00-1633). 



 7

 
 

Figure 4 ESML project edited by a user 
 
 

 
 

Figure 5 Same ESML project edited by another user 



 8

REFERENCES 
[1] Karsai G., Sztipanovits J., et al.: “Model-Integrated 
Development of Embedded Software,” Proceedings of the 
IEEE, Vol. 91, Issue: 1, pp. 145- 164, January, 2003 
 
[2] Ledeczi A.,  et al.: “Composing Domain-Specific Design 
Environments,” IEEE Computer, pp. 44-51, Nov, 2001 
 
[3] Ledeczi A., Davis J., Neema S., Agrawal A.: “Modeling 
Methodology for Integrated Simulation of Embedded 
Systems,” ACM Transactions on Modeling and Computer 
Simulation, Vol. 13, Issue 1, pp. 82-103, Jan 2003 
 
[4] Carnes J. R., Misra A.: "Model-Integrated Toolset for 
Fault Detection, Isolation and Recovery (FDIR)", 
Proceedings of the International Conference on Engineer-
ing of Computer Based Systems, March 11-15, 1996 
 
[5] Davis J. R., Scott J., et al.: "Multi-Domain Surety 
Modeling and Analysis for High Assurance Systems", 
Proceedings of the Engineering of Computer Based Systems 
Conference, March, 1999 
 
[6] Long E., Misra A. et al.: "Increasing Productivity at 
Saturn", IEEE Computer, August, 1998 
 
[7] http://www-306.ibm.com/software/awdtools/clearcase/ 
 
[8] http://msdn.microsoft.com/vstudio/previous/ssafe/ 
 
[9] Karsai G, Neema S., Abbott B., Sharp D.: “A Modeling 
Language and its Supporting Tools for Avionics Systems," 
Proceedings of the 21st Digital Avionics Systems 
Conference, August 2002 
 
[10] Harrison T., Levine D. and Schmidt D. C.: “The 
Design and Performance of a Real-time CORBA Event 
Service,” Proceedings of OOPSLA, ACM, Atlanta, GA, 
Oct, 1997. 

BIOGRAPHY 
 
Ákos Lédeczi (Member, IEEE) received the M.Sc. degree in 

electrical engineering from the 
Technical University of Budapest, 
Budapest, Hungary, in 1989, and the 
Ph.D. degree in electrical engineering 
from Vanderbilt University, Nashville, 
TN, in 1995. He is currently a Senior 
Research Scientist at the Institute for 
Software Integrated Systems, 
Vanderbilt University. His research 

interests include tools for visual modeling of complex 
systems, model-based software synthesis, and sensor 
networks.  
 

 
György Balogh received B.Sc. degree in computer science 

from Jozsef Attila Science University, 
Szeged, Hungary, in 1996. He is 
currently a Software Engineer at the 
Institute for Software Integrated 
Systems, Vanderbilt University. His 
research interests include sensor 
networks, genetic algorithms and 
neural networks. 
 

 
 
Zoltán Molnár received the M.Sc. degree in computer 

science from the Jozsef Attila Science 
University, Szeged, Hungary in 1999. 
Previously he worked in 
telecommunication field  for Nokia 
Corp. as softare development 
engineer. He is currently Staff 
Engineer at the Institute for Software 
Integrated Systems, Vanderbilt 
University. 

 
 
Peter Volgyesi is a Research Scientist at the Institute for 

Software Integrated Systems at 
Vanderbilt University. His current 
research interests include model 
integrated computing, visual 
programming environments, software 
engineering of embedded systems and 
wireless sensor networks. Previously he 
conducted research on composition and 
verification technologies for real-time 

systems at the Embedded Information Technologies 
Research Group of the Hungarian Academy of Sciences. He 
received his M.Sc. in Informatics from the Budapest 
University of Technology and Economics in 2000. 
 
Miklos Maroti is an Assistant Professor at Vanderbilt 

University. His current research 
interests include algebraic and 
ordered systems, varieties, 
decidability, formal specification and 
analysis of embedded systems, and 
active libraries of middleware 
components. He received a PhD in 
mathematics from Vanderbilt 
University.  


